Page 1

Displaying 1 – 4 of 4

Showing per page

Sign functions of imaginary quadratic fields and applications

Hassan Oukhaba (2005)

Annales de l’institut Fourier

We propose a definition of sign of imaginary quadratic fields. We give an example of such functions, and use it to define new invariants that are roots of the classical Ramachandra invariants. Also we introduce signed ordinary distributions and compute their signed cohomology by using Anderson's theory of double complex.

Sommes de Dedekind elliptiques et formes de Jacobi

Abdelmejid Bayad (2001)

Annales de l’institut Fourier

À partir des formes de Jacobi D L ( z , ϕ ) , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...

Currently displaying 1 – 4 of 4

Page 1