Page 1

Displaying 1 – 6 of 6

Showing per page

Random Thue and Fermat equations

Rainer Dietmann, Oscar Marmon (2015)

Acta Arithmetica

We consider Thue equations of the form a x k + b y k = 1 , and assuming the truth of the abc-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations a x k + b y k + c z k = 0 of degree at least six.

Rational points on a subanalytic surface

Jonathan Pila (2005)

Annales de l’institut Fourier

Let X n be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic curve contained in X .

Relative Bogomolov extensions

Robert Grizzard (2015)

Acta Arithmetica

A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of K × has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of L × K × . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.

Remarques sur une conjecture de Lang

Fabien Pazuki (2010)

Journal de Théorie des Nombres de Bordeaux

Le but de cet article est d’étudier une conjecture de Lang énoncée sur les courbes elliptiques dans un livre de Serge Lang, puis généralisée aux variétés abéliennes de dimension supérieure dans un article de Joseph Silverman. On donne un résultat asymptotique sur la hauteur des points de Heegner sur J 0 ( N ) , lequel permet de déduire que la conjecture est optimale dans sa formulation.

Currently displaying 1 – 6 of 6

Page 1