A Banach space determined by the Weil height
Page 1
Daniel Allcock, Jeffrey D. Vaaler (2009)
Acta Arithmetica
Philipp Habegger (2009)
Bulletin de la Société Mathématique de France
Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.
Everest, Graham, Ward, Thomas (1998)
Experimental Mathematics
G. R. Everest (1989)
Compositio Mathematica
Dasbach, Oliver T. (2008)
The Electronic Journal of Combinatorics [electronic only]
Jain, Sonal (2010)
The New York Journal of Mathematics [electronic only]
Enrico Bombieri, Umberto Zannier (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We study the behaviour of the absolute Weil height of algebraic numbers in certain infinite extensions of . In particular, we obtain a Northcott type property for infinite abelian extensions of finite exponent and also a Bogomolov type property for certain fields which are a -adic analog of totally real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in the archimedean case.
Joseph H. Silverman (1987)
Journal für die reine und angewandte Mathematik
Francesco Amoroso, Umberto Zannier (2000)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Fabrizio Barroero (2015)
Acta Arithmetica
Let k be a number field and S a finite set of places of k containing the archimedean ones. We count the number of algebraic points of bounded height whose coordinates lie in the ring of S-integers of k. Moreover, we give an asymptotic formula for the number of S̅-integers of bounded height and fixed degree over k, where S̅ is the set of places of k̅ lying above the ones in S.
Nevio Dubbini, Maurizio Monge (2012)
Acta Arithmetica
Gaël Rémond (2003)
Annales scientifiques de l'École Normale Supérieure
Joseph H. Silverman (1987/1988)
Mathematische Annalen
Page 1