The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We are studying the infinite family of elliptic curves associated with simplest cubic fields. If the rank of such curves is 1, we determine the whole structure of the Mordell-Weil group and find all integral points on the original model of the curve. Note however, that we are not able to find them on the Weierstrass model if the parameter is even. We have also obtained similar results for an infinite subfamily of curves of rank 2. To our knowledge, this is the first time that so much information...
C. J. Smyth was among the first to study the spectrum of the Weil height in the field of all totally real numbers, establishing both lower and upper bounds for the limit infimum of the height of all totally real integers, and determining isolated values of the height. Later, Bombieri and Zannier established similar results for totally p-adic numbers and, inspired by work of Ullmo and Zhang, termed this the Bogomolov property. In this paper, we use results on equidistribution of points of low height...
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...
Currently displaying 1 –
7 of
7