Displaying 121 – 140 of 197

Showing per page

Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines

Roland Bacher, Pierre de La Harpe, Boris Venkov (1999)

Annales de l'institut Fourier

Étant donnés un système de racines R d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à R . Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de R .

S-extremal strongly modular lattices

Gabriele Nebe, Kristina Schindelar (2007)

Journal de Théorie des Nombres de Bordeaux

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.

Sublattices of certain Coxeter lattices

Anne-Marie Bergé, Jacques Martinet (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper, we describe the sublattices of some lattices, extending previous results of [Ber]. Our description makes intensive use of graphs.

Sur la classification des réseaux parfaits de dimension 5

Jacques Martinet (1999)

Journal de théorie des nombres de Bordeaux

En utilisant des méthodes de Watson, nous donnons une courte démonstration de la classification (due à Korkine et Zolotareff ) des réseaux parfaits de dimension 5. Des considérations d'indice nous conduisent à nous intéresser à trois classes de réseaux, dont chacune contient précisément un réseau parfait.

Sur la racine carrée de la codifférente

Stéphane Vinatier (2003)

Journal de théorie des nombres de Bordeaux

On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.

Tables de réseaux entiers unimodulaires construits comme k -voisins de Z n

Roland Bacher (1997)

Journal de théorie des nombres de Bordeaux

Cet article énumère les réseaux entiers unimodulaires de dimension 24 , vus comme k -voisins de Z n . La première partie contient les informations nécessaires pour lire et pour travailler avec les tables. Elle ne contient aucune preuve. La deuxième partie est formée de tables qui contiennent les données numériques pour les réseaux unimodulaires entiers indécomposable de dimension 24 . Un appendice esquisse les preuves des énoncés.

Currently displaying 121 – 140 of 197