Une famille de réseaux dual-extrêmes
On construit pour tout entier pair un couple dual-extrême de réseaux euclidiens de dimension dont aucun n’est parfait, et tel que l’un d’entre eux seulement soit eutactique.
On construit pour tout entier pair un couple dual-extrême de réseaux euclidiens de dimension dont aucun n’est parfait, et tel que l’un d’entre eux seulement soit eutactique.
On étudie ici du point de vue de la dualité les réseaux de dimension ayant un automorphisme d’ordre . On y rencontre en particulier le premier exemple irrationnel de couple de réseaux duaux extrême pour le produit de leurs constantes d’Hermite, et l’on donne une réponse partielle à un problème de Conway et Sloane sur les réseaux isoduaux.
On étudie une famille de corps réels cycliques de degré 10 liés à la courbe modulaire . Les unités modulaires déterminent un sous-groupe d’unités d’indice fini. Sous certaines conditions, cet indice est égal à 1 ou 5.
A lattice in Euclidean d-space is called well-rounded if it contains d linearly independent vectors of minimal length. This class of lattices is important for various questions, including sphere packing or homology computations. The task of enumerating well-rounded sublattices of a given lattice is of interest already in dimension 2, and has recently been treated by several authors. In this paper, we analyse the question more closely in the spirit of earlier work on similar sublattices and coincidence...