Previous Page 2

Displaying 21 – 36 of 36

Showing per page

An extension of Mahler's theorem to simply connected nilpotent groups

Martin Moskowitz (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note gives an extension of Mahler's theorem on lattices in R n to simply connected nilpotent groups with a Q -structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.

Another 80-dimensional extremal lattice

Mark Watkins (2012)

Journal de Théorie des Nombres de Bordeaux

We show that the unimodular lattice associated to the rank 20 quaternionic matrix group SL 2 ( F 41 ) S ˜ 3 GL 80 ( Z ) is a fourth example of an 80-dimensional extremal lattice. Our method is to use the positivity of the Θ -series in conjunction with an enumeration of all the norm 10 vectors. The use of Aschbacher’s theorem on subgroups of finite classical groups (reliant on the classification of finite simple groups) provides one proof that this lattice is distinct from the previous three, while computing the inner product...

Asymptotics of variance of the lattice point count

Jiří Janáček (2008)

Czechoslovak Mathematical Journal

The variance of the number of lattice points inside the dilated bounded set r D with random position in d has asymptotics r d - 1 if the rotational average of the squared modulus of the Fourier transform of the set is O ( ρ - d - 1 ) . The asymptotics follow from Wiener’s Tauberian theorem.

Currently displaying 21 – 36 of 36

Previous Page 2