A dual approach to triangle sequences: a multidimensional continued fraction algorithm.
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) , where is a sequence of positive integers satisfying d₁(x) ≥ 2 and for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and to denote the Hausdorff...
Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form with integer coefficients satisfying , i ≥ 1. In this case we say that is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also prove new properties...
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.