Sequences and dynamical systems associated with canonical approximation by rationals
Page 1
Andrew Haas (2012)
Acta Arithmetica
Bernhard Schratzberger (2004)
Journal de Théorie des Nombres de Bordeaux
The technique of singularization was developped by C. Kraaikamp during the nineties, in connection with his work on dynamical systems related to continued fraction algorithms and their diophantine approximation properties. We generalize this technique from one into two dimensions. We apply the method to the the two dimensional Brun’s algorithm. We discuss, how this technique, and related ones, can be used to transfer certain metrical and diophantine properties from one algorithm to the others. In...
Wolfgang Schwarz (1979)
Journal für die reine und angewandte Mathematik
Ganatsiou, C. (1995)
Portugaliae Mathematica
Fritz Schweiger (2008)
Acta Arithmetica
Erling Folner (1983)
Mathematica Scandinavica
Teturo Kamae (1976/1977)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
François Gramain (1972/1973)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Mačaj, M., Šalát, T. (2001)
Mathematica Bohemica
Martin Máčaj, Tibor Šalát (2001)
Mathematica Bohemica
This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
Kentaro Nakaishi (2006)
Acta Arithmetica
J. Coquet, M. Mendès-France (1977)
Acta Arithmetica
Georges Hansel, Jean-Pierre Troallic (1980)
Bulletin de la Société Mathématique de France
Jean Coquet (1980)
Monatshefte für Mathematik
Jean Coquet, Teturo Kamae, Michel Mendès France (1977)
Bulletin de la Société Mathématique de France
Jean Coquet (1979)
Annales de l'institut Fourier
Dans cet article, nous démontrons que la mesure spectrale d’une suite multiplicative de module dont le spectre de Fourier-Bohr est non vide, est atomique. La preuve, basée sur un résultat de J.-P. Bertrandias, évite le calcul de la corrélation.
Jean Coquet (1980)
Bulletin de la Société Mathématique de France
M. M. Dodson (1992)
Acta Arithmetica
Page 1