Regularities of distribution
This paper is closely related to an earlier paper of the author and W. Narkiewicz (cf. [7]) and to some papers concerning ratio sets of positive integers (cf. [4], [5], [12], [13], [14]). The paper contains some new results completing results of the mentioned papers. Among other things a characterization of the Steinhaus property of sets of positive integers is given here by using the concept of ratio sets of positive integers.
désigne la somme des chiffres de l’entier en base et la somme des chiffres de associée au développement de en fraction continue. Dans un article paru aux Annales de l’Institut Fourier (31 (1981), 1–15), Coquet, Rhin et Toffin montrent que, lorsque ou est irrationnel, la suite est équirépartie modulo 1. On précise ici que l’équirépartition est uniforme.
By iterating the Bolyai-Rényi transformation , almost every real number can be expanded as a continued radical expression with digits for all . For any real number and digit , let be the maximal length of consecutive ’s in the first digits of the Bolyai-Rényi expansion of . We study the asymptotic behavior of the run-length function . We prove that for any digit , the Lebesgue measure of the set is , where . We also obtain that the level set is of full Hausdorff dimension...