Displaying 101 – 120 of 174

Showing per page

On the behaviour close to the unit circle of the power series with Möbius function coefficients

Oleg Petrushov (2014)

Acta Arithmetica

Let ( z ) = n = 1 μ ( n ) z n . We prove that for each root of unity e ( β ) = e 2 π i β there is an a > 0 such that ( e ( β ) r ) = Ω ( ( 1 - r ) - a ) as r → 1-. For roots of unity e(l/q) with q ≤ 100 we prove that these omega-estimates are true with a = 1/2. From omega-estimates for (z) we obtain omega-estimates for some finite sums.

On the discrepancy of sequences associated with the sum-of-digits function

Gerhard Larcher, N. Kopecek, R. F. Tichy, G. Turnwald (1987)

Annales de l'institut Fourier

If w = ( q k ) k N denotes the sequence of best approximation denominators to a real α , and s α ( n ) denotes the sum of digits of n in the digit representation of n to base w , then for all x irrational, the sequence ( s α ( n ) · x ) n N is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if α has bounded continued fraction coefficients.

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character sums.

Currently displaying 101 – 120 of 174