A conditional density theorem for the zeros of the Riemann zeta-function
We introduce a family of deformations of the Riemann xi-function endowed with two continuous parameters. We show that it has rich analytic structure and that its conjectural (mild) zero-free region for some fixed parameter is a sufficient condition for the Riemann hypothesis to hold for the Riemann zeta function.
We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties...