Page 1 Next

Displaying 1 – 20 of 32

Showing per page

Second moments of Dirichlet L -functions weighted by Kloosterman sums

Tingting Wang (2012)

Czechoslovak Mathematical Journal

For the general modulo q 3 and a general multiplicative character χ modulo q , the upper bound estimate of | S ( m , n , 1 , χ , q ) | is a very complex and difficult problem. In most cases, the Weil type bound for | S ( m , n , 1 , χ , q ) | is valid, but there are some counterexamples. Although the value distribution of | S ( m , n , 1 , χ , q ) | is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for k -th Kloosterman sums and analytic method to study the asymptotic properties...

Séries hypergéométriques et irrationalité des valeurs de la fonction zêta de Riemann

Tanguy Rivoal (2003)

Journal de théorie des nombres de Bordeaux

Nous effectuons un survol des résultats connus sur la nature diophantienne des valeurs de la fonction zêta de Riemann aux entiers. Nous mettons en particulier l’accent sur le rôle important des séries hypergéométriques dans les démonstrations de l’irrationalité de ζ ( 2 ) , ζ ( 3 ) et d’une infinité des nombres ζ ( 2 n + 1 ) .

Séries hypergéométriques multiples et polyzêtas

J. Cresson, S. Fischler, T. Rivoal (2008)

Bulletin de la Société Mathématique de France

Nous décrivons un algorithme théorique et effectif permettant de démontrer que des séries et intégrales hypergéométriques multiples relativement générales se décomposent en combinaisons linéaires à coefficients rationnels de polyzêtas.

Small values of the Riemann zeta function on the critical line

Justas Kalpokas, Paulius Šarka (2015)

Acta Arithmetica

We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.

Some problems on mean values of the Riemann zeta-function

Aleksandar Ivić (1996)

Journal de théorie des nombres de Bordeaux

Several problems and results on mean values of ζ ( s ) are discussed. These include mean values of | ζ ( 1 2 + i t ) | and the fourth moment of | ζ ( σ + i t ) | for 1 / 2 < σ < 1 .

Currently displaying 1 – 20 of 32

Page 1 Next