On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s, x) for s ... 0 and real odd characters x.
The distribution of the vector (|ζ(s, α)|; ζ(s, α)), where ζ(s, α) is the Hurwitz zeta-function with transcendental parameter α, is considered and a probabilistic limit theorem is obtained. Also, the dependence between |ζ(s, α)| and ζ(s, α) in terms of m-characteristic transforms is discussed.
In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.