Sur la fonction «nombre de facteurs premiers de n»
Soit la suite croissante des diviseurs d’un entier . Nous étudions ici certaines propriétés de l’ensemble des couples , , en rapport avec la conjecture d’Erdös affirmant que l’inégalité a lieu pour presque tout .
Soit le nombre de groupes abéliens d’ordre . Pour étudier les grandes valeurs prises par , on définit, comme l’a fait Ramanujan pour le nombre de diviseurs de , les nombres -hautement composés et -hautement composés supérieurs. Pour calculer ces derniers nombres, on détermine les sommets de l’enveloppe inférieure convexe de la fonction où est le nombre de partitions de . Sous l’hypothèse de Riemann, on donne un développement asymptotique de l’ordre maximum de la fonction .