Displaying 21 – 40 of 85

Showing per page

Sum of higher divisor function with prime summands

Yuchen Ding, Guang-Liang Zhou (2023)

Czechoslovak Mathematical Journal

Let l 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function 1 n 1 , n 2 , ... , n l x 1 / 2 τ k ( n 1 2 + n 2 2 + + n l 2 ) , where τ k ( n ) represents the k th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum 1 p 1 , p 2 , ... , p l x τ k ( p 1 + p 2 + + p l ) , where p 1 , p 2 , , p l are prime variables.

Sums of reciprocals of additive functions running over short intervals

J.-M. De Koninck, I. Kátai (2007)

Colloquium Mathematicae

Letting f(n) = A log n + t(n), where t(n) is a small additive function and A a positive constant, we obtain estimates for the quantities x n x + H 1 / f ( Q ( n ) ) and x p x + H 1 / f ( Q ( p ) ) , where H = H(x) satisfies certain growth conditions, p runs over prime numbers and Q is a polynomial with integer coefficients, whose leading coefficient is positive, and with all its roots simple.

Currently displaying 21 – 40 of 85