On the error function in the asymptotic formula for the counting function of k-full numbers
We study the logarithm of the least common multiple of the sequence of integers given by . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].
As promised in the first paper of this series (Ann. Inst. Fourier, 26-4 (1976), 115-131), these two articles deal with the asymptotic distribution of the fractional parts of where is an arithmetical function (namely , , ) and is an integer (or a prime order) running over the interval . The results obtained are rather sharp, although one can improve on some of them at the cost of increased technicality. Number-theoretic applications will be given later on.
For an integer we denote by the largest prime factor of . We obtain several upper bounds on the number of solutions of congruences of the form and use these bounds to show that