Displaying 681 – 700 of 1124

Showing per page

Partitions sans petites parts (II)

Élie Mosaki (2008)

Journal de Théorie des Nombres de Bordeaux

On désigne par r ( n , m ) le nombre de partitions de l’entier n en parts supérieures ou égales à m , et R ( n , m ) = r ( n - m , m ) le nombre de partitions de n de plus petite part m . Dans un précédent article (voir [9]) un développement asymptotique de r ( n , m ) est obtenu uniformément pour 1 m = O ( n )  ; on complète ce développement uniformément pour 1 m = ( n log - 3 n ) . Afin de prolonger les résultats jusqu’à m n , on donne un encadrement de r ( n , m ) valable pour n 2 / 3 m n en utilisant la relation r ( n , m ) = t = 1 n / m P ( n - ( m - 1 ) t , t ) P ( i , t ) désigne le nombre de partitions de i en exactement t parts. On donne aussi une...

Permuting the partitions of a prime

Stéphane Vinatier (2009)

Journal de Théorie des Nombres de Bordeaux

Given an odd prime number p , we characterize the partitions ̲ of p with p non negative parts 0 1 ... p - 1 0 for which there exist permutations σ , τ of the set { 0 , ... , p - 1 } such that p divides i = 0 p - 1 i σ ( i ) but does not divide i = 0 p - 1 i τ ( i ) . This happens if and only if the maximal number of equal parts of ̲ is less than p - 2 . The question appeared when dealing with sums of p -th powers of resolvents, in order to solve a Galois module structure problem.

Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques

Teddy Mignot (2016)

Acta Arithmetica

We demonstrate the Batyrev-Manin Conjecture for the number of points of bounded height on hypersurfaces of some toric varieties whose rank of the Picard group is 2. The method used is inspired by the one developed by Schindler for the case of hypersurfaces of biprojective spaces and by Blomer and Brüdern for some hypersurfaces of multiprojective spaces. These methods are based on the Hardy-Littlewood circle method. The constant obtained in the final asymptotic formula is the one conjectured by Peyre....

Polar lattices from the point of view of nuclear spaces.

Wojciech Banaszczyk (1989)

Revista Matemática de la Universidad Complutense de Madrid

The aim of this survey article is to show certain questions concerning nuclear spaces and linear operators in normed spaces lead to questions from geometry of numbers.

Polynomial quotients: Interpolation, value sets and Waring's problem

Zhixiong Chen, Arne Winterhof (2015)

Acta Arithmetica

For an odd prime p and an integer w ≥ 1, polynomial quotients q p , w ( u ) are defined by q p , w ( u ) ( u w - u w p ) / p m o d p with 0 q p , w ( u ) p - 1 , u ≥ 0, which are generalizations of Fermat quotients q p , p - 1 ( u ) . First, we estimate the number of elements 1 u < N p for which f ( u ) q p , w ( u ) m o d p for a given polynomial f(x) over the finite field p . In particular, for the case f(x)=x we get bounds on the number of fixed points of polynomial quotients. Second, before we study the problem of estimating the smallest number (called the Waring number) of summands needed to express each element of...

Currently displaying 681 – 700 of 1124