Universal counting of lattice points in polytopes.
Let A and B be finite sets in a commutative group. We bound |A+hB| in terms of |A|, |A+B| and h. We provide a submultiplicative upper bound that improves on the existing bound of Imre Ruzsa by inserting a factor that decreases with h.
Let p be a prime, ℤₚ be the finite field in p elements, k be a positive integer, and A be the multiplicative subgroup of nonzero kth powers in ℤₚ. The goal of this paper is to determine, for a given positive integer s, a value tₛ such that if |A| ≫ tₛ then every element of ℤₚ is a sum of s kth powers. We obtain , and for s ≥ 6, . For s ≥ 24 further improvements are made, such as and .
We investigate in various ways the representation of a large natural number as a sum of positive -th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.