Tate duality and wild ramification.
The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.
L’auteur présente des applications élémentaires de la théorie du corps de classes de Kato et Parshin en dimensions 1 et 3 : calcul du conducteur d’une extension de Witt-Artin-Schreier d’un corps local de dimension 1, et étude des revêtements abéliens des surfaces.
The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order . This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.