Page 1 Next

Displaying 1 – 20 of 23

Showing per page

Gauss Sums of Cubic Characters over p r , p Odd

Davide Schipani, Michele Elia (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

An elementary approach is shown which derives the values of the Gauss sums over p r , p odd, of a cubic character. New links between Gauss sums over different field extensions are shown in terms of factorizations of the Gauss sums themselves, which are then revisited in terms of prime ideal decompositions. Interestingly, one of these results gives a representation of primes p of the form 6k+1 by a binary quadratic form in integers of a subfield of the cyclotomic field of the pth roots of unity.

Gauss Sums of the Cubic Character over G F ( 2 m ) : an Elementary Derivation

Davide Schipani, Michele Elia (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field 2 s without using Davenport-Hasse’s theorem (namely, if s is odd the Gauss sum is -1, and if s is even its value is - ( - 2 ) s / 2 ).

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue, Ronghui Lu (2012)

Kybernetika

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...

GLS: New class of generalized Legendre sequences with optimal arithmetic cross-correlation

Huijuan WANG, Qiaoyan WEN, Jie ZHANG (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The Legendre symbol has been used to construct sequences with ideal cross-correlation, but it was never used in the arithmetic cross-correlation. In this paper, a new class of generalized Legendre sequences are described and analyzed with respect to their period, distributional, arithmetic cross-correlation and distinctness properties. This analysis gives a new approach to study the connection between the Legendre symbol and the arithmetic cross-correlation. In the end of this paper, possible application...

Currently displaying 1 – 20 of 23

Page 1 Next