Previous Page 4

Displaying 61 – 69 of 69

Showing per page

Approximate polynomial GCD

Eliaš, Ján, Zítko, Jan (2013)

Programs and Algorithms of Numerical Mathematics

The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications, for example, in image processing and control theory. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldest and commonly used Euclid’s algorithm. However, this is an ill-posed problem, particularly when some unknown noise is applied to the polynomial coefficients. Hence, new methods for the GCD computation...

Approximatting rings of integers in number fields

J. A. Buchmann, H. W. Lenstra (1994)

Journal de théorie des nombres de Bordeaux

In this paper we study the algorithmic problem of finding the ring of integers of a given algebraic number field. In practice, this problem is often considered to be well-solved, but theoretical results indicate that it is intractable for number fields that are defined by equations with very large coefficients. Such fields occur in the number field sieve algorithm for factoring integers. Applying a variant of a standard algorithm for finding rings of integers, one finds a subring of the number field...

Arithmetic diophantine approximation for continued fractions-like maps on the interval

Avraham Bourla (2014)

Acta Arithmetica

We establish arithmetical properties and provide essential bounds for bi-sequences of approximation coefficients associated with the natural extension of maps, leading to continued fraction-like expansions. These maps are realized as the fractional part of Möbius transformations which carry the end points of the unit interval to zero and infinity, extending the classical regular and backwards continued fraction expansions.

Currently displaying 61 – 69 of 69

Previous Page 4