Page 1

Displaying 1 – 12 of 12

Showing per page

De l’euclidianité de 2 + 2 + 2 et 2 + 2 pour la norme

Jean-Paul Cerri (2000)

Journal de théorie des nombres de Bordeaux

Cet article a pour objectif de présenter un algorithme permettant de montrer, à l’aide d’un ordinateur, l’euclidianité pour la norme du sous-corps réel maximal K du corps cyclotomique ( ζ 32 ) ζ 32 = e i π / 16 , corps totalement réel de degré 8 et de discriminant 2 147 483 648 , et plus précisément de prouver que M ( K ) = 1 2 . La méthode utilisée permet par ailleurs de prouver que pour K = ( ζ 16 + ζ 16 - 1 ) , on a également M ( K ) = 1 2 (conjecture de H. Cohn et J. Deutsch). Les résultats relatifs à ce cas sont exposés en fin d’article.

Denominators of Igusa class polynomials

Kristin Lauter, Bianca Viray (2014)

Publications mathématiques de Besançon

In [22], the authors proved an explicit formula for the arithmetic intersection number CM ( K ) . G 1 on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field K . These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross...

Derived sequences.

Cohen, C.L., Iannucci, D.E. (2003)

Journal of Integer Sequences [electronic only]

Digits and continuants in euclidean algorithms. Ergodic versus tauberian theorems

Brigitte Vallée (2000)

Journal de théorie des nombres de Bordeaux

We obtain new results regarding the precise average-case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the average-case complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide...

Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux

Henri Laville, Brigitte Vallée (1994)

Journal de théorie des nombres de Bordeaux

En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.

Currently displaying 1 – 12 of 12

Page 1