O Fermatových číslech
Although Sarnak's conjecture holds for compact group rotations (irrational rotations, odometers), it is not even known whether it holds for all Jewett-Krieger models of such rotations. In this paper we show that it does, as long as the model is at the same a topological extension, via the same map that establishes the isomorphism, of an equicontinuous model. In particular, we recover (after [AKL]) that regular Toeplitz systems satisfy Sarnak's conjecture, and, as another consequence, so do...
It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function which is the number of positive integers and free of prime factors . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional () real right-angled simplices. In this paper, we...
We survey methods to compute three-point branched covers of the projective line, also known as Belyĭ maps. These methods include a direct approach, involving the solution of a system of polynomial equations, as well as complex analytic methods, modular forms methods, and -adic methods. Along the way, we pose several questions and provide numerous examples.
Let be an algebraic number field given by the minimal polynomial of . We want to determine all subfields of given degree. It is convenient to describe each subfield by a pair such that is the minimal polynomial of . There is a bijection between the block systems of the Galois group of and the subfields of . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding...
As a subproduct of the Schoof-Elkies-Atkin algorithm to count points on elliptic curves defined over finite fields of characteristic , there exists an algorithm that computes, for an Elkies prime, -torsion points in an extension of degree at cost bit operations in the favorable case where .We combine in this work a fast algorithm for computing isogenies due to Bostan, Morain, Salvy and Schost with the -adic approach followed by Joux and Lercier to get an algorithm valid without any limitation...