Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles
The main purpose of this note is to show how Sturm-Habicht Sequence can be generalized to the multivariate case and used to compute the number of real solutions of a polynomial system of equations with a finite number of complex solutions. Using the same techniques, some formulae counting the number of real solutions of such polynomial systems of equations inside n-dimensional rectangles or triangles in the plane are presented.
This article formalizes the proof of Niven’s theorem [12] which states that if x/π and sin(x) are both rational, then the sine takes values 0, ±1/2, and ±1. The main part of the formalization follows the informal proof presented at Pr∞fWiki (https://proofwiki.org/wiki/Niven’s_Theorem#Source_of_Name). For this proof, we have also formalized the rational and integral root theorems setting constraints on solutions of polynomial equations with integer coefficients [8, 9].
2000 Mathematics Subject Classification: 12D10We prove smoothness of the strata and a transversality property of their tangent spaces.
2000 Mathematics Subject Classification: 12D10.We prove that all arrangements (consistent with the Rolle theorem and some other natural restrictions) of the real roots of a real polynomial and of its s-th derivative are realized by real polynomials.
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let be subsets with finite Lebesgue measure. Then, for any sequence of -linearly independent polynomials in the polynomial ring there are real numbers , not all zero, such that the real affine variety simultaneously bisects each of subsets , . Then some its applications are studied.