Displaying 41 – 60 of 151

Showing per page

Improvements on the Cantor-Zassenhaus factorization algorithm

Michele Elia, Davide Schipani (2015)

Mathematica Bohemica

The paper presents a careful analysis of the Cantor-Zassenhaus polynomial factorization algorithm, thus obtaining tight bounds on the performances, and proposing useful improvements. In particular, a new simplified version of this algorithm is described, which entails a lower computational cost. The key point is to use linear test polynomials, which not only reduce the computational burden, but can also provide good estimates and deterministic bounds of the number of operations needed for factoring....

Inégalités sur la mesure de Mahler d'un polynôme

V. Flammang (1997)

Journal de théorie des nombres de Bordeaux

Dans cet article, nous donnons une minoration de la mesure de Mahler d'un polynôme à coefficients entiers, dont toutes les racines sont d'une part réelles positives, d'autre part réelles, en fonction de la valeur de ce polynôme en zéro. Ces minorations améliorent des résultats antérieurs de A. Schinzel. Par ailleurs, nous en déduisons des inégalités de M.-J. Bertin, liant la mesure d'un nombre algébrique à sa norme.

Irreducibility of the iterates of a quadratic polynomial over a field

Mohamed Ayad, Donald L. McQuillan (2000)

Acta Arithmetica

1. Introduction. Let K be a field of characteristic p ≥ 0 and let f(X) be a polynomial of degree at least two with coefficients in K. We set f₁(X) = f(X) and define f r + 1 ( X ) = f ( f r ( X ) ) for all r ≥ 1. Following R. W. K. Odoni [7], we say that f is stable over K if f r ( X ) is irreducible over K for every r ≥ 1. In [6] the same author proved that the polynomial f(X) = X² - X + 1 is stable over ℚ. He wrote in [7] that the proof given there is quite difficult and it would be of interest to have an elementary proof. In the sequel...

Mosco convergence of sequences of homogeneous polynomials.

J. Ferrera (1998)

Revista Matemática Complutense

In this paper we give a characterization of uniform convergence on weakly compact sets, for sequences of homogeneous polynomials in terms of the Mosco convergence of their level sets. The result is partially extended for holomorphic functions. Finally we study the relationship with other convergences.

Currently displaying 41 – 60 of 151