Errata to "On reducible trinomials" (Dissertationes Mathematicae 329 (1993))
Let be a number field, its ring of integers, and be an irreducible polynomial. Hilbert’s irreducibility theorem gives infinitely many integral specializations such that is still irreducible. In this paper we study the set of those with reducible. We show that is a finite set under rather weak assumptions. In particular, previous results obtained by diophantine approximation techniques, appear as special cases of some of our results. Our method is different. We use elementary group...
Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a -adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over . The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.