Displaying 201 – 220 of 292

Showing per page

Relative multiplication and distributive modules

José Escoriza, Blas Torrecillas (1997)

Commentationes Mathematicae Universitatis Carolinae

We study the construction of new multiplication modules relative to a torsion theory τ . As a consequence, τ -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of...

Sequences between d-sequences and sequences of linear type

Hamid Kulosman (2009)

Commentationes Mathematicae Universitatis Carolinae

The notion of a d-sequence in Commutative Algebra was introduced by Craig Huneke, while the notion of a sequence of linear type was introduced by Douglas Costa. Both types of sequences generate ideals of linear type. In this paper we study another type of sequences, that we call c-sequences. They also generate ideals of linear type. We show that c-sequences are in between d-sequences and sequences of linear type and that the initial subsequences of c-sequences are c-sequences. Finally we prove a...

Solution d'une conjecture de C. Berenstein - A. Yger et invariants de contact à l'infini

Michel Hickel (2001)

Annales de l’institut Fourier

Soient k un corps commutatif et I = ( p 1 , , p m ) k n [ X ] un idéal de l’anneau des polynômes k [ X 1 , , X n ] (éventuellement I = k n [ X ] ). Nous prouvons une conjecture de C. Berenstein - A. Yger qui affirme que pour tout polynôme p , élément de la clôture intégrale I ¯ de l’idéal I , on a une représentation p m = 1 i m p i q i , avec max deg ( q i p i ) m deg p + m d 1 d m , d i = deg p i , 1 i m .

Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings

Mitra Jalali, Abolfazl Tehranian, Reza Nikandish, Hamid Rasouli (2020)

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG ( R ) with the vertex set A ( R ) * = A ( R ) { 0 } and two distinct vertices I and J are adjacent if and only if I Ann ( J ) ( 0 ) and J Ann ( I ) ( 0 ) . In this paper, the perfectness of SAG ( R ) for some classes of rings R is investigated.

Some homological properties of amalgamated modules along an ideal

Hanieh Shoar, Maryam Salimi, Abolfazl Tehranian, Hamid Rasouli, Elham Tavasoli (2023)

Czechoslovak Mathematical Journal

Let R and S be commutative rings with identity, J be an ideal of S , f : R S be a ring homomorphism, M be an R -module, N be an S -module, and let ϕ : M N be an R -homomorphism. The amalgamation of R with S along J with respect to f denoted by R f J was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of ( R f J ) -module called the amalgamation of M and N along J with respect to ϕ , and denoted by M ϕ J N . We study some homological properties of the ( R f J ) -module M ϕ J N . Among other results,...

Currently displaying 201 – 220 of 292