Quasi-complete ideal lattices
We study the construction of new multiplication modules relative to a torsion theory . As a consequence, -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
Let be a commutative ring with identity. A proper ideal is said to be an -ideal of if for , and imply . We give a new generalization of the concept of -ideals by defining a proper ideal of to be a semi -ideal if whenever is such that , then or . We give some examples of semi -ideal and investigate semi -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of...
The notion of a d-sequence in Commutative Algebra was introduced by Craig Huneke, while the notion of a sequence of linear type was introduced by Douglas Costa. Both types of sequences generate ideals of linear type. In this paper we study another type of sequences, that we call c-sequences. They also generate ideals of linear type. We show that c-sequences are in between d-sequences and sequences of linear type and that the initial subsequences of c-sequences are c-sequences. Finally we prove a...
Soient un corps commutatif et un idéal de l’anneau des polynômes (éventuellement ). Nous prouvons une conjecture de C. Berenstein - A. Yger qui affirme que pour tout polynôme , élément de la clôture intégrale de l’idéal , on a une représentationoù .
Let be a commutative ring with identity and be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of is defined as the graph with the vertex set and two distinct vertices and are adjacent if and only if and . In this paper, the perfectness of for some classes of rings is investigated.
Let and be commutative rings with identity, be an ideal of , be a ring homomorphism, be an -module, be an -module, and let be an -homomorphism. The amalgamation of with along with respect to denoted by was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of -module called the amalgamation of and along with respect to , and denoted by . We study some homological properties of the -module . Among other results,...