Submodules of secondary modules.
We describe the structure of the group of algebraic automorphisms of the following surfaces 1) P1,k x P1,k minus a diagonal; 2) P1,k x P1,k minus a fiber. The motivation is to get a new proof of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the structure of the semi-group of polynomial proper maps from C2 to C2.
Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.
We give a simplification, in the case of Q-algebras, of the proof of Artin's Conjecture, which says that a regular morphism between Noetherian rings is the inductive limit of smooth morphisms of finite type.