On orthogonal decomposition of homogeneous polynomials
We consider analogies between the logically independent properties of strong going-between (SGB) and going-down (GD), as well as analogies between the universalizations of these properties. Transfer results are obtained for the (universally) SGB property relative to pullbacks and Nagata ring constructions. It is shown that if are domains such that is an LFD universally going-down domain and is algebraic over , then the inclusion map satisfies GB for each . However, for any nonzero ring...
A ring extension is said to be strongly affine if each -subalgebra of is a finite-type -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if is a quasi-local ring of finite dimension, then is integrally closed and strongly affine if and only if is a Prüfer extension (i.e. is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let be...
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...
In this paper, we will present several necessary and sufficient conditions on a commutative ring such that the algebraic and geometric local cohomologies are equivalent.
Let be a finite abelian extension of , with the ring of algebraic integers of . We investigate the Galois structure of the unique fractional -ideal which (if it exists) is unimodular with respect to the trace form of .
In this paper, we give a geometrization and a generalization of a lemma of differential Galois theory, used by Singer and van der Put in their reference book. This geometrization, in addition of giving a nice insight on this result, offers us the opportunity to investigate several points of differential algebra and differential algebraic geometry. We study the class of simple Δ-schemes and prove that they all have a coarse space of leaves. Furthermore, instead of considering schemes endowed with...