On Certain Numbers Associated to Isolated Critical Points.
We give a deepened version of a lemma of Gabrielov and then use it to prove the following fact: if h ∈ 𝕂[[X]] (𝕂 = ℝ or ℂ) is a root of a non-zero polynomial with convergent power series coefficients, then h is convergent.
Let R be a real closed field, and denote by the ring of germs, at the origin of Rⁿ, of functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring with some natural properties. We prove that, for each n ∈ ℕ, is a noetherian ring and if R = ℝ (the field of real numbers), then , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring .
We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.
Let x be an indeterminate over ℂ. We investigate solutions αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of are polynomials in ck(s).It is possible to replace...
Let be a germ of normal surface with local ring covering a germ of regular surface with local ring of characteristic . Given an extension of valuation rings birationally dominating , we study the existence of a new such pair of local rings birationally dominating , such that is regular and has only toric singularities. This is achieved when is defectless or when is equal to
Let k[[x,y]] be the formal power series ring in two variables over a field k of characteristic zero and let d be a nonzero derivation of k[[x,y]]. We prove that if Ker(d) ≠ k then Ker(d) = Ker(δ), where δ is a jacobian derivation of k[[x,y]]. Moreover, Ker(d) is of the form k[[h]] for some h ∈ k[[x,y]].