Il funtore di restrizione di Weil nel contesto della geometria rigido-formale
Let be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring of an integral domain is called a maximal non valuation domain in if is not a valuation subring of , and for any ring such that , is a valuation subring of . For a local domain , the equivalence of an integrally closed maximal non VD in and a maximal non local subring of is established. The relation between and the number...
Let be a discrete valuation ring of mixed characteristics , with residue field . Using work of Sekiguchi and Suwa, we construct some finite flat -models of the group scheme of -th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When is perfect and is a complete totally ramified extension of the ring of Witt vectors , we provide a parallel study of the Breuil-Kisin modules of finite flat models...
The purpose of this paper is to define a new numerical invariant of valuations centered in a regular two-dimensional regular local ring. For this, we define a sequence of non-negative rational numbers δν = {δν(j)}j ≥ 0 which is determined by the proximity relations of the successive quadratic transformations at the points determined by a valuation ν. This sequence is characterized by seven combinatorial properties, so that any sequence of non-negative rational numbers having the above properties...
We consider two issues concerning polynomial cycles. Namely, for a discrete valuation domain of positive characteristic (for ) or for any Dedekind domain of positive characteristic (but only for ), we give a closed formula for a set of all possible cycle-lengths for polynomial mappings in . Then we give a new property of sets , which refutes a kind of conjecture posed by W. Narkiewicz.