Page 1

Displaying 1 – 10 of 10

Showing per page

Idempotents and the multiplicative group of some totally bounded rings

Mohamed A. Salim, Adela Tripe (2011)

Czechoslovak Mathematical Journal

In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power 2 0 commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.

Images directes I : Espaces rigides analytiques et images directes

Jean-Yves Etesse (2012)

Journal de Théorie des Nombres de Bordeaux

Cet article est le premier d’une série de trois articles consacrés aux images directes d’isocristaux : ici nous considérons des isocristaux sans structure de Frobenius ; dans le deuxième [Et 6] (resp. le troisième [Et 7]), nous introduirons une structure de Frobenius dans le contexte convergent (resp. surconvergent).Pour un morphisme propre et lisse relevable nous établissons la surconvergence des images directes, grâce à un théorème de changement de base pour un morphisme propre entre espaces rigides...

Inertial subrings of a locally finite algebra

Yousef Alkhamees, Surjeet Singh (2002)

Colloquium Mathematicae

I. S. Cohen proved that any commutative local noetherian ring R that is J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra A over a commutative ring K. In case K is a Hensel ring and the module A K is finitely generated, under some additional conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed....

Integer-valued polynomials on algebras: a survey

Sophie Frisch (2010)

Actes des rencontres du CIRM

We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature.

Currently displaying 1 – 10 of 10

Page 1