On quasi-projective uniserial modules
We give a deepened version of a lemma of Gabrielov and then use it to prove the following fact: if h ∈ 𝕂[[X]] (𝕂 = ℝ or ℂ) is a root of a non-zero polynomial with convergent power series coefficients, then h is convergent.
We give a short proof of the Jacobian criterion of formal smoothness using the Lichtenbaum-Schlessinger cotangent complex.
We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if is such a variety, then every piecewise polynomial function on can be written as suprema of infima of polynomial functions on . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of such varieties, which implies the Pierce-Birkhoff Conjecture.
The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to...