Espaces analytiques sous-algébriques
In this paper we consider questions of the following type. Let be a base field and be a field extension. Given a geometric object over a field (e.g. a smooth curve of genus ), what is the least transcendence degree of a field of definition of over the base field ? In other words, how many independent parameters are needed to define ? To study these questions we introduce a notion of essential dimension for an algebraic stack. Using the resulting theory, we give a complete answer to...
Nous généralisons la théorie de l’intégration motivique au cadre des schémas formels. Nous définissons et étudions l’anneau booléen des ensembles mesurables, la mesure motivique, l’intégrale motivique et nous démontrons un théorème de changement de variables pour cette intégrale.
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.