Previous Page 3

Displaying 41 – 60 of 60

Showing per page

The deformation relation on the set of Cohen-Macaulay modules on a quotient surface singularity

Trond Stølen Gustavsen, Runar Ile (2011)

Banach Center Publications

Let X be a quotient surface singularity, and define G d e f ( X , r ) as the directed graph of maximal Cohen-Macaulay (MCM) modules with edges corresponding to deformation incidences. We conjecture that the number of connected components of G d e f ( X , r ) is equal to the order of the divisor class group of X, and when X is a rational double point (RDP), we observe that this follows from a result of A. Ishii. We view this as an enrichment of the McKay correspondence. For a general quotient singularity X, we prove the conjecture...

Théorèmes de préparation Gevrey et étude de certaines applications formelles

Augustin Mouze (2003)

Annales Polonici Mathematici

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from s to p without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...

Travaux de Zink

William Messing (2005/2006)

Séminaire Bourbaki

The diverse Dieudonné theories have as their common goal the classification of formal groups and p -divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, W ( R ) , equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of...

Which weakly ramified group actions admit a universal formal deformation?

Jakub Byszewski, Gunther Cornelissen (2009)

Annales de l’institut Fourier

Consider a representation of a finite group G as automorphisms of a power series ring k [ [ t ] ] over a perfect field k of positive characteristic. Let D be the associated formal mixed-characteristic deformation functor. Assume that the action of G is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such D that are not pro-representable...

Currently displaying 41 – 60 of 60

Previous Page 3