Page 1

Displaying 1 – 10 of 10

Showing per page

Local cohomology and support for triangulated categories

Dave Benson, Srikanth B. Iyengar, Henning Krause (2008)

Annales scientifiques de l'École Normale Supérieure

We propose a new method for defining a notion of support for objects in any compactly generated triangulated category admitting small coproducts. This approach is based on a construction of local cohomology functors on triangulated categories, with respect to a central ring of operators. Special cases are, for example, the theory for commutative noetherian rings due to Foxby and Neeman, the theory of Avramov and Buchweitz for complete intersection local rings, and varieties for representations of...

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

Local cohomology multiplicities in terms of étale cohomology

Manuel Blickle, Raphaël Bondu (2005)

Annales de l'institut Fourier

Using a recently introduced correspondence of Emerton-Kisin we give a description of Lyubeznik’s local cohomology invariants in terms of local étale cohomology with 𝐙 / p 𝐙 coefficients.

Local volumes of Cartier divisors over normal algebraic varieties

Mihai Fulger (2013)

Annales de l’institut Fourier

In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.

Currently displaying 1 – 10 of 10

Page 1