Zero cycles and complete intersections on singular varieties.
We propose a refinement of the notion of blow-Nash equivalence between Nash function germs, which has been introduced in [2] as an analog in the Nash setting of the blow-analytic equivalence defined by T.-C. Kuo [13]. The new definition is more natural and geometric. Moreover, this equivalence relation still does not admit moduli for a Nash family of isolated singularities. But though the zeta functions constructed in [2] are no longer invariants for this new relation, thanks to a Denef & Loeser...