The search session has expired. Please query the service again.
Sia un fibrato in coniche standard con curva discriminante di grado . La varietà delle sezioni minime delle superfici , dove è una curva di grado , si spezza in due componenti e . Si prova che, mediante la mappa di Abel-Jacobi , una di queste componenti domina la Jacobiana intermedia , mentre l'altra domina il divisore theta . Questi risultati vengono applicati ad alcuni threefold di Fano birazionalmente equivalenti a un fibrato in coniche. In particolare si prova che il generico...
Let be an -dimensional irreducible smooth complex projective variety embedded in a projective space. Let be a closed subscheme of , and be a positive integer such that is generated by global sections. Fix an integer , and assume the general divisor is smooth. Denote by the quotient of by the cohomology of and also by the cycle classes of the irreducible components of dimension of . In the present paper we prove that the monodromy representation on for the family of smooth...
On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et...
Currently displaying 1 –
6 of
6