Some remarks on the arithmetic Hodge index conjecture
Soit un morphisme propre d’un -schéma intègre dans un germe de courbe algébrique lisse sur . On construit une structure de Hodge mixte sur les cohomologies évanescentes en résolvant les complexes évanescents et par des complexes de Hodge mixtes cohomologiques. Ceci donne une majoration du niveau d’unipotence de l’action de la monodromie.
On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...
We prove that Bloch’s conjecture is true for surfaces with obtained as -sets of a section of a very ample vector bundle on a variety with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as on holomorphic -forms of , then it acts as on -cycles of degree of . In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general implies the...