Moduli spaces of covers and the Hurwitz monodromy group.
We study the Hilbert scheme of smooth connected curves on a smooth del Pezzo -fold . We prove that any degenerate curve , i.e. any curve contained in a smooth hyperplane section of , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) and (ii) for every line on such that , the normal bundle is trivial (i.e. ). As a consequence, we prove an analogue (for ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...
Here we give several examples of projective degenerations of subvarieties of . The more important case considered here is the d-ple Veronese embedding of ; we will show how to degenerate it to the union of n-dimensional linear subspaces of and the union of scrolls. Other cases considered in this paper are essentially projective bundles over important varieties. The key tool for the degenerations is a general method due to Moishezon. We will give elsewhere several applications to postulation...