The search session has expired. Please query the service again.
In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an provided that has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.
We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface and describe “wall-crossing behavior” for objects with the same invariants as when generates Pic and . If, in addition, is a or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural...
Currently displaying 1 –
2 of
2