The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give an affirmative answer to an open question posed by Demailly-Peternell-Schneider in 2001 and recently by Peternell. Let be a surjective morphism from a log canonical pair onto a -Gorenstein variety . If is nef, we show that is pseudo-effective.
Given a covering family of effective 1-cycles on a complex projective variety , we find conditions allowing one to construct a geometric quotient , with regular on the whole of , such that every fiber of is an equivalence class for the equivalence relation naturally defined by . Among other results, we show that on a normal and -factorial projective variety with canonical singularities and , every covering and quasi-unsplit family of rational
curves generates a geometric extremal...
Let (X Δ) be a four-dimensional log variety that is projective over the field of complex numbers. Assume that (X, Δ) is not Kawamata log terminal (klt) but divisorial log terminal (dlt). First we introduce the notion of “log quasi-numerically positive”, by relaxing that of “numerically positive”. Next we prove that, if the log canonical divisorK X+Δ is log quasi-numerically positive on (X, Δ) then it is semi-ample.
This is the text of a talk given at the XVII Convegno dellUnione Matematica Italiana held at Milano, September 8-13, 2003. I would like to thank Angelo Lopez and Ciro Ciliberto for the kind invitation to the conference. I survey some numerical conjectures and theorems concerning relations between the index, the pseudo-index and the Picard number of a Fano variety. The results I refer to are contained in the paper [3], wrote in collaboration with Bonavero, Debarre and Druel.
Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro’s result on klt-trivial fibrations.
Let be a projective Frobenius split variety with a fixed Frobenius splitting . In this paper we give a sharp uniform bound on the number of subvarieties of which are compatibly Frobenius split with . Similarly, we give a bound on the number of prime -ideals of an -finite -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
Let be a complex Fano manifold of arbitrary dimension, and a prime divisor in . We consider the image of in under the natural push-forward of -cycles. We show that . Moreover if , then either where is a Del Pezzo surface, or and has a fibration in Del Pezzo surfaces onto a Fano manifold such that .
Currently displaying 1 –
19 of
19