Page 1

Displaying 1 – 2 of 2

Showing per page

Geometric genera for ample vector bundles with regular sections.

Antonio Lanteri (2000)

Revista Matemática Complutense

Let X be a smooth complex projective variety of dimension n ≥ 3. A notion of geometric genus pg(X,E) for ample vector bundles E of rank r < n on X admitting some regular sections is introduced. The following inequality holds: pg(X,E) ≥ hn-r,0(X). The question of characterizing equality is discussed and the answer is given for E decomposable of corank 2. Some conjectures suggested by the result are formulated.

Currently displaying 1 – 2 of 2

Page 1