Displaying 221 – 240 of 284

Showing per page

The arithmetic of curves defined by iteration

Wade Hindes (2015)

Acta Arithmetica

We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...

The Brauer–Manin obstruction for curves having split Jacobians

Samir Siksek (2004)

Journal de Théorie des Nombres de Bordeaux

Let X 𝒜 be a non-constant morphism from a curve X to an abelian variety 𝒜 , all defined over a number field k . Suppose that X is a counterexample to the Hasse principle. We give sufficient conditions for the failure of the Hasse principle on X to be accounted for by the Brauer–Manin obstruction. These sufficiency conditions are slightly stronger than assuming that 𝒜 ( k ) and Ш ( 𝒜 / k ) are finite.

The class group of a one-dimensional affinoid space

Marius Van Der Put (1980)

Annales de l'institut Fourier

A curve X over a non-archimedean valued field is with respect to its analytic structure a finite union of affinoid spaces. The main result states that the class group of a one dimensional, connected, regular affinoid space Y is trivial if and only if Y is a subspace of P 1 . As a consequence, X has locally a trivial class group if and only if the stable reduction of X has only rational components.

The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant, Delphy Shaulis (2004)

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [12], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

Currently displaying 221 – 240 of 284