Displaying 241 – 260 of 284

Showing per page

The modified diagonal cycle on the triple product of a pointed curve

Benedict H. Gross, Chad Schoen (1995)

Annales de l'institut Fourier

Let X be a curve over a field k with a rational point e . We define a canonical cycle Δ e Z 2 ( X 3 ) hom . Suppose that k is a number field and that X has semi-stable reduction over the integers of k with fiber components non-singular. We construct a regular model of X 3 and show that the height pairing τ * ( Δ e ) , τ * ' ( Δ e ) is well defined where τ and τ ' are correspondences. The paper ends with a brief discussion of heights and L -functions in the case that X is a modular curve.

The p -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large

Remke Kloosterman (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper we show that for every prime p 5 the dimension of the p -torsion in the Tate-Shafarevich group of E / K can be arbitrarily large, where E is an elliptic curve defined over a number field K , with [ K : ] bounded by a constant depending only on p . From this we deduce that the dimension of the p -torsion in the Tate-Shafarevich group of A / can be arbitrarily large, where A is an abelian variety, with dim A bounded by a constant depending only on p .

The Schottky-Jung theorem for Mumford curves

Guido Van Steen (1989)

Annales de l'institut Fourier

The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.

Currently displaying 241 – 260 of 284