On the Normal Bundles of Smooth Rational Spaces Curves.
Let be an integral projective curve with . For all positive integers , let be the set of all with and spanned. Here we prove that if , then except in a few cases (essentially if is a double covering).
Let k be an algebraically closed field of characteristic 0. Let C be an irreducible nonsingular curve in ℙⁿ such that 3C = S ∩ F, where S is a hypersurface and F is a surface in ℙⁿ and F has rational triple points. We classify the rational triple points through which such a curve C can pass (Theorem 1.8), and give an example (1.12). We only consider reduced and irreducible surfaces.
Let be an algebraic projective smooth and trigonal curve of genus . In this paper we define, in a way equivalent to that followed by A. Maroni in [1], an integer , called the species of , which is a birational invariant having the property that and mod(2). In section 1 we prove that for every and every , as before, there are trigonal curves of genus and species . In section 2 we define the space of moduli of trigonal curves of genus and species . We note that is irreducible...