On the Hilbert Scheme of Curves in Higher-dimensional Projective Space.
In 2001, motivated by his results on finite-type knot diagram invariants, Östlund conjectured that Reidemeister moves 1 and 3 are sufficient to describe a homotopy from any generic immersion S¹ → ℝ² to the standard embedding of the circle. We show that this conjecture is false.
Let X ⊂ Pn be an integral and non-degenerate m-dimensional variety defined over R. For any P ∈ Pn(R) the real X-rank r x,R(P) is the minimal cardinality of S ⊂ X(R) such that P ∈ . Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.
Sia una curva dello spazio di grado contenuta in una superficie di grado e non in una di grado . Se è integra, allora ; questo limite superiore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3 (iii)]). Ogni curva dello spazio (anche non ridotta o riducibile) può essere ottenuta come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo di rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve riducibili...
We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs which take into account the inflection points of the fibres of . We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.
Let X be a compact Riemann surface and associated to each point p-i of a finite subset S of X is a positive integer m-i. Fix an elliptic curve C. To this data we associate a smooth elliptic surface Z fibered over X. The group C acts on Z with X as the quotient. It is shown that the space of all vector bundles over Z equipped with a lift of the action of C is in bijective correspondence with the space of all parabolic bundles over X with parabolic structure over S and the parabolic weights at any...
The “linear orbit” of a plane curve of degree is its orbit in under the natural action of . In this paper we compute the degree of the closure of the linear orbits of most curves with positive dimensional stabilizers. Our tool is a nonsingular variety dominating the orbit closure, which we construct by a blow-up sequence mirroring the sequence yielding an embedded resolution of the curve. The results given here will serve as an ingredient in the computation of the analogous information for...
Let C be a smooth non-degenerate integral curve of degree d and genus g in over an algebraically closed field of characteristic zero. For each point P in let be the linear system on C induced by the hyperplanes through P. By one maps C onto a plane curve , such a map can be seen as a projection of C from P. If P is not the vertex of a cone of bisecant lines, then will have only finitely many singular points; or to put it slightly different: The secant scheme parametrizing divisors in...
Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
The preperiodic dynatomic curve is the closure in ℂ² of the set of (c,z) such that z is a preperiodic point of the polynomial with preperiod n and period p (n,p ≥ 1). We prove that each has exactly d-1 irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of . We also compute the genus of each component and the Galois group of the defining polynomial of .