On the group orders of elliptic curves over finite fields
Elliptic curves with CM unveil a new phenomenon in the theory of large algebraic fields. Rather than drawing a line between and or and they give an example where the line goes beween and and another one where the line goes between and .
In this article, we formalize operations of points on an elliptic curve over GF(p). Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: compellProjCo and addellProjCo are unary and binary operations of a point over the elliptic curve.