Combinatorial aspects of elliptic curves.
2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.We call a complex (quasiprojective) surface of hyperbolic type, iff – after removing finitely many points and/or curves – the universal cover is the complex two-dimensional unit ball. We characterize abelian surfaces which have a birational transform of hyperbolic type by the existence of a reduced divisor with only elliptic curve components and maximal singularity rate (equal to 4). We discover a Picard modular surface of...
We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial...